Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Journal of Cystic Fibrosis ; 21(Supplement 2):S258, 2022.
Article in English | EMBASE | ID: covidwho-2313250

ABSTRACT

Background: Air-liquid interface (ALI) and organoid culture are key techniques for differentiating human airway epithelial cells (HAECs). The efficiency and robustness of these assays often depends on the quality of primary-isolated cells, but primary cell isolation workflows, with which the user controls the choice of isolation method, cell culture medium, and culture format, may reduce reproducibility. Therefore, an optimized, standardized workflow can enhance and support isolation of epithelial cells from diseased donors with potentially rare cystic fibrosis (CF) mutations or particularly sensitive cell populations. We have developed a standardized workflow for isolation and culture of freshly derived airway epithelial cells. Method(s): Briefly, HAECs isolated from primary tissue were expanded in PneumaCult-Ex Plus Medium for 1 week and then seeded into Corning Transwell inserts and expanded until confluency. The cells were then differentiated in PneumaCult-ALI Medium for at least 4 weeks. To assess differentiation efficiency in ALI culture, the cells were immunostained to detect Muc5AC, acetylated tubulin, and ZO-1 to identify goblet cells, ciliated cells, and apical tight junctions, respectively, aswell as SARS-CoV-2 cell entry targets angiotensin-converting enzyme 2 and transmembrane serine protease 2. Ion transport and barrier function of the ALI culturesand response to CF transmembrane conductance regulator (CFTR) correctors were also measured. In addition, freshly derived HAECs were seeded into Corning Matrigel domes in the presence of PneumaCult Airway Organoid Seeding Medium. Oneweek later, the mediumwas changed to PneumaCult Airway Organoid Differentiation Medium and maintained for an additional 3 weeks to promote cell differentiation. These airway organoids were then treated with CFTR corrector VX-809 for 24 hours, followed by 6-hour treatment with amiloride, forskolin, and genistein to induce organoid swelling. Result(s): Our results demonstrate that ALI cultures derived from CF donors displayed partial rescue of CFTR across multiple passages after treatment with VX-809. Airway organoids were found to express functional CFTR, as evidenced by forskolin treatment, which induced a 64 +/- 14% (n = 1 donor) greater organoid area than in vehicle control-treated airway organoids. Airway organoids derived from CF donors displayed a loss of forskolininduced swelling, which could be partially re-established with VX-809 treatment (29 +/- 9%, n = 3). Conclusion(s): In summary, the PneumaCult workflow supports robust, efficient culture of primary-airway epithelial cells that can be used as physiologically relevant models suitable for CF research, CFTR corrector screening, and studying airway biology.Copyright © 2022, European Cystic Fibrosis Society. All rights reserved

2.
Physiol Rep ; 11(7): e15592, 2023 04.
Article in English | MEDLINE | ID: covidwho-2302852

ABSTRACT

Using the 16HBE 14o- human airway epithelial cell culture model, calcitriol (Vitamin D) was shown to improve barrier function by two independent metrics - increased transepithelial electrical resistance (TER) and reduced transepithelial diffusion of 14 C-D-mannitol (Jm ). Both effects were concentration dependent and active out to 168 h post-treatment. Barrier improvement associated with changes in the abundance of specific tight junctional (TJ) proteins in detergent-soluble fractions, most notably decreased claudin-2. TNF-α-induced compromise of barrier function could be attenuated by calcitriol with a concentration dependence similar to that observed for improvement of control barrier function. TNF-α-induced increases in claudin-2 were partially reversed by calcitriol. The ERK 1,2 inhibitor, U0126, itself improved 16HBE barrier function indicating MAPK pathway regulation of 16HBE barrier function. Calcitriol's action was additive to the effect of U0126 in reducing TNF- α -induced barrier compromise, suggesting that calcitriol may be acting through a non-ERK pathway in its blunting of TNF- α - induced barrier compromise. This was supported by calcitriol being without effect on pERK levels elevated by the action of TNF-α. Lack of effect of TNF- α on the death marker, caspase-3, and the inability of calcitriol to decrease the elevated LC3B II level caused by TNF-α, suggest that calcitriol's barrier improvement does not involve a cell death pathway. Calcitriol's improvement of control barrier function was not additive to barrier improvement induced by retinoic acid (Vitamin A). Calcitriol improvement and protection of airway barrier function could in part explain Vitamin D's reported clinical efficacy in COVID-19 and other airway diseases.


Subject(s)
COVID-19 , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Calcitriol/pharmacology , Calcitriol/metabolism , Claudin-2/metabolism , Tight Junctions/metabolism , COVID-19/metabolism , Epithelial Cells/metabolism , Lung/metabolism
3.
European Respiratory Journal Conference: European Respiratory Society International Congress, ERS ; 60(Supplement 66), 2022.
Article in English | EMBASE | ID: covidwho-2268922

ABSTRACT

As hyperbaric oxygen (HBO) has been shown to mitigate the COVID-19 symptoms, we were interested in studying whether HBO exposure affects expression of viral entry genes and innate immune genes in the air-liquid interface (ALI)-cultured human bronchial epithelial cells (HBECs) derived from normal individuals (NHBECs) and age-matched COPD patients (DHBECs), which were cultured under normoxia or daily exposure of 40-min hyperbaric oxygen (HBO) with 100% O2 at 2.5 ATA for 28 days in total. We found for the first time that HBO exposure differentially regulated mucociliary differentiation of HBECs by respectively decreasing and increasing expression of CGRP, MUC5AC, FOXJ1, NOTCH3 and HEYL in NHBECs and DHBECs, and respectively decreased and increased FOXO1 expression whereas increased and decreased NFE2L2 and NFKB1 expression in NHBECs and DHBECs, in association with respectively decreased and increased expression the SARS-CoV-2 entry genes ACE2 and 2 TMPRSS2 and the tight junction protein genes TJP1 and TJP2, and in association with respectively increased and decreased expression of the cell growth and inflammatory transcription factors SRF, c-FOS and TP63, as well as the TLR pathway genes TLR3, AKT1, IL-1B, IL-5, IL-6, IL-33, IRAK4 and NFKBIA in NHBECs and DHBECs. (Figure Presented).

5.
Comput Struct Biotechnol J ; 19: 1654-1660, 2021.
Article in English | MEDLINE | ID: covidwho-2261625

ABSTRACT

Susceptibility to severe illness from COVID-19 is anticipated to be associated with cigarette smoking as it aggravates the risk of cardiovascular and respiratory illness, including infections. This is particularly important with the advent of a new strain of coronaviruses, the severe acute respiratory syndrome coronavirus (SARS-CoV-2) that has led to the present pandemic, coronavirus disease 2019 (COVID-19). Although, the effects of smoking on COVID-19 are less described and controversial, we presume a link between smoking and COVID-19. Smoking has been shown to enhance the expression of the angiotensin-converting enzyme-2 (ACE-2) and transmembrane serine protease 2 (TMPRSS2) key entry genes utilized by SARS-CoV-2 to infect cells and induce a 'cytokine storm', which further increases the severity of COVID-19 clinical course. Nevertheless, the impact of smoking on ACE-2 and TMPRSS2 receptors expression remains paradoxical. Thus, further research is necessary to unravel the association between smoking and COVID-19 and to pursue the development of potential novel therapies that are able to constrain the morbidity and mortality provoked by this infectious disease. Herein we present a brief overview of the current knowledge on the correlation between smoking and the expression of SARS-CoV-2 key entry genes, clinical manifestations, and disease progression.

6.
Exp Lung Res ; 49(1): 72-85, 2023.
Article in English | MEDLINE | ID: covidwho-2257199

ABSTRACT

Purpose: Airway epithelial barrier leak and the involvement of proinflammatory cytokines play a key role in a variety of diseases. This study evaluates barrier compromise by the inflammatory mediator Tumor Necrosis Factor-α (TNF-α) in the human airway epithelial Calu-3 model. Methods: We examined the effects of TNF-α on barrier function in Calu-3 cell layers using Transepithelial Electrical Resistance (TER) and transepithelial diffusion of radiolabeled probe molecules. Western immunoblot analyses of tight junctional (TJ) proteins in detergent soluble fractions were performed. Results: TNF-α dramatically reduced TER and increased paracellular permeability of both 14C-D-mannitol and the larger 5 kDa probe, 14C-inulin. A time course of the effects shows two separate actions on barrier function. An initial compromise of barrier function occurs 2-4 hours after TNF-α exposure, followed by complete recovery of barrier function by 24 hrs. Beginning 48 hrs. post-exposure, a second more sustained barrier compromise ensues, in which leakiness persists through 144 hrs. There were no changes in TJ proteins observed at 3 hrs. post exposure, but significant increases in claudins-2, -3, -4, and -5, as well as a decrease in occludin were seen at 72 hrs. post TNF-α exposure. Both the 2-4 hr. and the 72 hr. TNF-α induced leaks are shown to be mediated by the ERK signaling pathway. Conclusion: TNF-α induced a multiphasic transepithelial leak in Calu-3 cell layers that was shown to be ERK mediated, as well as involve changes in the TJ complex. The micronutrients, retinoic acid and calcitriol, were effective at reducing this barrier compromise caused by TNF-α. The significance of these results for airway disease and for COVID-19 specifically are discussed.


Subject(s)
COVID-19 , Tumor Necrosis Factor-alpha , Humans , Tumor Necrosis Factor-alpha/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Tight Junctions/metabolism , COVID-19/metabolism , Cytokines/metabolism , Epithelial Cells/metabolism
7.
J Virol ; 97(3): e0188422, 2023 03 30.
Article in English | MEDLINE | ID: covidwho-2244413

ABSTRACT

Porcine epidemic diarrhea (PED) is a highly contagious disease, caused by porcine epidemic diarrhea virus (PEDV), which causes huge economic losses. Tight junction-associated proteins play an important role during virus infection; therefore, maintaining their integrity may be a new strategy for the prevention and treatment of PEDV. Long noncoding RNAs (lncRNAs) participate in numerous cellular functional activities, yet whether and how they regulate the intestinal barrier against viral infection remains to be elucidated. Here, we established a standard system for evaluating intestinal barrier integrity and then determined the differentially expressed lncRNAs between PEDV-infected and healthy piglets by lncRNA-seq. A total of 111 differentially expressed lncRNAs were screened, and lncRNA446 was identified due to significantly higher expression after PEDV infection. Using IPEC-J2 cells and intestinal organoids as in vitro models, we demonstrated that knockdown of lncRNA446 resulted in increased replication of PEDV, with further damage to intestinal permeability and tight junctions. Mechanistically, RNA pulldown and an RNA immunoprecipitation (RIP) assay showed that lncRNA446 directly binds to ALG-2-interacting protein X (Alix), and lncRNA446 inhibits ubiquitinated degradation of Alix mediated by TRIM25. Furthermore, Alix could bind to ZO1 and occludin and restore the expression level of the PEDV M gene and TJ proteins after lncRNA446 knockdown. Additionally, Alix knockdown and overexpression affects PEDV infection in IPEC-J2 cells. Collectively, our findings indicate that lncRNA446, by inhibiting the ubiquitinated degradation of Alix after PEDV infection, is involved in tight junction regulation. This study provides new insights into the mechanisms of intestinal barrier resistance and damage repair triggered by coronavirus. IMPORTANCE Porcine epidemic diarrhea is an acute, highly contagious enteric viral disease severely affecting the pig industry, for which current vaccines are inefficient due to the high variability of PEDV. Because PEDV infection can lead to severe injury of the intestinal epithelial barrier, which is the first line of defense, a better understanding of the related mechanisms may facilitate the development of new strategies for the prevention and treatment of PED. Here, we demonstrate that the lncRNA446 directly binds one core component of the actomyosin-tight junction complex named Alix and inhibits its ubiquitinated degradation. Functionally, the lncRNA446/Alix axis can regulate the integrity of tight junctions and potentially repair intestinal barrier injury after PEDV infection.


Subject(s)
Calcium-Binding Proteins , Coronavirus Infections , RNA, Long Noncoding , Swine Diseases , Tight Junctions , Animals , Cell Line , Coronavirus Infections/metabolism , Porcine epidemic diarrhea virus/physiology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Swine , Swine Diseases/metabolism , Tight Junctions/genetics , Gene Knockdown Techniques , Organoids , In Vitro Techniques , Calcium-Binding Proteins/metabolism , Protein Binding , Proteolysis
8.
Novel Platforms for Drug Delivery Applications ; : 569-606, 2023.
Article in English | ScienceDirect | ID: covidwho-2120338

ABSTRACT

Nasal and pulmonary drug delivery are attractive routes for the administration of a growing number of drugs for topical and systemic treatment as well as for prevention by vaccines. This is of particular interest for drugs with poor bioavailability, as the gastrointestinal passage and hepatic first pass effect can be avoided. The development of drugs, vehicles, and devices made substantial progress. The drug delivery research is focused on transmucosal absorption enhancers such as surfactants, enzyme inhibitors, biopolymers, tight junction modulators, cyclodextrins, and gelling systems and on nasal and pulmonary carrier systems like nanoparticles, microspheres, nano- or microemulsions, and liposomes. Many approaches are still in early development and need further investigation. The trend for devices is going to nasal dry powder inhalers and smart pulmonary nebulizers. A new research area includes inhalable vaccines, biological drugs, and coronavirus treatments.

9.
Pathogens ; 11(8)2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1997737

ABSTRACT

Swine coronaviruses include the following six members, namely porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine delta coronavirus (PDCoV), swine acute diarrhea syndrome coronavirus (SADS-CoV), porcine hemagglutinating encephalomyelitis virus (PHEV), and porcine respiratory coronavirus (PRCV). Clinically, PEDV, TGEV, PDCoV, and SADS-CoV cause enteritis, whereas PHEV induces encephalomyelitis, and PRCV causes respiratory disease. Years of studies reveal that swine coronaviruses replicate in the cellular cytoplasm exerting a wide variety of effects on cells. Some of these effects are particularly pertinent to cell pathology, including endoplasmic reticulum (ER) stress, unfolded protein response (UPR), autophagy, and apoptosis. In addition, swine coronaviruses are able to induce cellular changes, such as cytoskeletal rearrangement, alterations of junctional complexes, and epithelial-mesenchymal transition (EMT), that render enterocytes unable to absorb nutrients normally, resulting in the loss of water, ions, and protein into the intestinal lumen. This review aims to describe the cellular changes in swine coronavirus-infected cells and to aid in understanding the pathogenesis of swine coronavirus infections. This review also explores how the virus exerted subcellular and molecular changes culminating in the clinical and pathological findings observed in the field.

10.
mBio ; 13(4): e0194422, 2022 08 30.
Article in English | MEDLINE | ID: covidwho-1986333

ABSTRACT

The human upper respiratory tract, specifically the nasopharyngeal epithelium, is the entry portal and primary infection site of respiratory viruses. Productive infection of SARS-CoV-2 in the nasal epithelium constitutes the cellular basis of viral pathogenesis and transmissibility. Yet a robust and well-characterized in vitro model of the nasal epithelium remained elusive. Here we report an organoid culture system of the nasal epithelium. We derived nasal organoids from easily accessible nasal epithelial cells with a perfect establishment rate. The derived nasal organoids were consecutively passaged for over 6 months. We then established differentiation protocols to generate 3-dimensional differentiated nasal organoids and organoid monolayers of 2-dimensional format that faithfully simulate the nasal epithelium. Moreover, when differentiated under a slightly acidic pH, the nasal organoid monolayers represented the optimal correlate of the native nasal epithelium for modeling the high infectivity of SARS-CoV-2, superior to all existing organoid models. Notably, the differentiated nasal organoid monolayers accurately recapitulated higher infectivity and replicative fitness of the Omicron variant than the prior variants. SARS-CoV-2, especially the more transmissible Delta and Omicron variants, destroyed ciliated cells and disassembled tight junctions, thereby facilitating virus spread and transmission. In conclusion, we establish a robust organoid culture system of the human nasal epithelium for modeling upper respiratory infections and provide a physiologically-relevant model for assessing the infectivity of SARS-CoV-2 emerging variants. IMPORTANCE An in vitro model of the nasal epithelium is imperative for understanding cell biology and virus-host interaction in the human upper respiratory tract. Here we report an organoid culture system of the nasal epithelium. Nasal organoids were derived from readily accessible nasal epithelial cells with perfect efficiency and stably expanded for more than 6 months. The long-term expandable nasal organoids were induced maturation into differentiated nasal organoids that morphologically and functionally simulate the nasal epithelium. The differentiated nasal organoids adequately recapitulated the higher infectivity and replicative fitness of SARS-CoV-2 emerging variants than the ancestral strain and revealed viral pathogenesis such as ciliary damage and tight junction disruption. Overall, we established a human nasal organoid culture system that enables a highly efficient reconstruction and stable expansion of the human nasal epithelium in culture plates, thus providing a facile and robust tool in the toolbox of microbiologists.


Subject(s)
COVID-19 , Nasal Mucosa , Organoids , SARS-CoV-2 , COVID-19/virology , Humans , Nasal Mucosa/virology , Organoids/virology , SARS-CoV-2/classification , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Tissue Culture Techniques
11.
Topics in Antiviral Medicine ; 30(1 SUPPL):9, 2022.
Article in English | EMBASE | ID: covidwho-1880599

ABSTRACT

Background: Life threatening thrombotic events involving both the arterial and venous systems are prominently present in SARS-CoV-2 infected individuals presenting with severe COVID-19. Abnormal clotting also occurs in asymptomatically or mildly infected individuals and in people experiencing post-acute sequelae of SARS-CoV-2 infection (PASC). Clinical management of this clotting disorder has proven difficult in part because these fibrin clots are highly resistant to plasmin-mediated fibrinolysis. Methods: An array of different binding, biochemical, microscopic, and in vivo assays were performed in these studies. All experiments were performed at least three times in triplicate and reported differences were shown to be statistically significant. Results: We find that SARS-CoV-2 Spike directly binds to the terminal clotting factors, fibrinogen and fibrin (Kd of 5.3 μ M and 0.4 μ M respectively). Mixing Spike and plasma accelerates fibrin polymerization. Scanning electron microscopy reveals an abnormal clot structure with finer, denser, and roughened fibrin fibers. Scanning peptide competition assays indicate Spike binds fibrin at three sites: 1) the plasmin cleavage site needed for fibrinolysis;2) a site involved in innate immune signaling via fibrin binding to Complement Receptor 3 (CR3);and 3) a site with no known function. Examination of mice injected 24h earlier with Spike pseudotyped HIV-ΔEnv virions reveals extensive intra-and extravascular fibrin deposition in the lung accompanied by endothelial activation, loss of tight junctions, increased influx of macrophages, and the generation of high levels of reactive oxygen species. This thromboinflammatory response is not observed when Bald virions are injected or when Spike pseudotyped virions are injected into mice lacking fibrinogen. Intriguingly, these Spike-induced proinflammatory effects are blocked by an anti-fibrin monoclonal antibody, 5B8, which interferes with fibrin binding to CR3. Conclusion: Our findings reveal that the SARS-CoV-2 Spike protein binding to fibrinogen/fibrin results in the formation of structurally abnormal, fibrinolysis-resistant blood clots whose inflammatory effects are effectively neutralized by a specific fibrin-targeting monoclonal antibody. While COVID-19 clotting was thought to occur as a result of systemic inflammation, our findings suggest clotting during SARS-CoV-2 infection in fact is a driver of inflammation. Targeting fibrin could lead to novel therapeutic approaches for patients with acute COVID-19 and PASC.

12.
Cells ; 11(9)2022 05 06.
Article in English | MEDLINE | ID: covidwho-1847275

ABSTRACT

The novel corona virus that is now known as (SARS-CoV-2) has killed more than six million people worldwide. The disease presentation varies from mild respiratory symptoms to acute respiratory distress syndrome and ultimately death. Several risk factors have been shown to worsen the severity of COVID-19 outcomes (such as age, hypertension, diabetes mellitus, and obesity). Since many of these risk factors are known to be influenced by obstructive sleep apnea, this raises the possibility that OSA might be an independent risk factor for COVID-19 severity. A shift in the gut microbiota has been proposed to contribute to outcomes in both COVID-19 and OSA. To further evaluate the potential triangular interrelationships between these three elements, we conducted a thorough literature review attempting to elucidate these interactions. From this review, it is concluded that OSA may be a risk factor for worse COVID-19 clinical outcomes, and the shifts in gut microbiota associated with both COVID-19 and OSA may mediate processes leading to bacterial translocation via a defective gut barrier which can then foster systemic inflammation. Thus, targeting biomarkers of intestinal tight junction dysfunction in conjunction with restoring gut dysbiosis may provide novel avenues for both risk detection and adjuvant therapy.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Sleep Apnea, Obstructive , COVID-19/complications , Humans , Inflammation/complications , Risk Factors , SARS-CoV-2 , Sleep Apnea, Obstructive/complications
13.
Cells ; 11(9):1569, 2022.
Article in English | ProQuest Central | ID: covidwho-1837554

ABSTRACT

The novel corona virus that is now known as (SARS-CoV-2) has killed more than six million people worldwide. The disease presentation varies from mild respiratory symptoms to acute respiratory distress syndrome and ultimately death. Several risk factors have been shown to worsen the severity of COVID-19 outcomes (such as age, hypertension, diabetes mellitus, and obesity). Since many of these risk factors are known to be influenced by obstructive sleep apnea, this raises the possibility that OSA might be an independent risk factor for COVID-19 severity. A shift in the gut microbiota has been proposed to contribute to outcomes in both COVID-19 and OSA. To further evaluate the potential triangular interrelationships between these three elements, we conducted a thorough literature review attempting to elucidate these interactions. From this review, it is concluded that OSA may be a risk factor for worse COVID-19 clinical outcomes, and the shifts in gut microbiota associated with both COVID-19 and OSA may mediate processes leading to bacterial translocation via a defective gut barrier which can then foster systemic inflammation. Thus, targeting biomarkers of intestinal tight junction dysfunction in conjunction with restoring gut dysbiosis may provide novel avenues for both risk detection and adjuvant therapy.

14.
Int J Mol Sci ; 23(6)2022 Mar 10.
Article in English | MEDLINE | ID: covidwho-1742487

ABSTRACT

The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care-but also medical prophylactic and therapeutic care in general-to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.


Subject(s)
Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Micronutrients/metabolism , Vitamin A/metabolism , Vitamin D/metabolism , Zinc/metabolism , Animals , COVID-19/epidemiology , COVID-19/metabolism , COVID-19/virology , Humans , Micronutrients/pharmacology , Pandemics/prevention & control , SARS-CoV-2/physiology , Tight Junctions/drug effects , Tight Junctions/metabolism , Vitamin A/pharmacology , Vitamin D/pharmacology , Vitamins/metabolism , Vitamins/pharmacology , Zinc/pharmacology
15.
Cells ; 11(5)2022 03 01.
Article in English | MEDLINE | ID: covidwho-1742339

ABSTRACT

To develop adenoviral cell- or tissue-specific gene delivery, understanding of the infection mechanisms of adenoviruses is crucial. Several adenoviral attachment proteins such as CD46, CAR and sialic acid have been identified and studied. However, most receptor studies were performed on non-human cells. Combining our reporter gene-tagged adenovirus library with an in vitro human gene knockout model, we performed a systematic analysis of receptor usage comparing different adenoviruses side-by-side. The CRISPR/Cas9 system was used to knockout CD46 and CAR in the human lung epithelial carcinoma cell line A549. Knockout cells were infected with 22 luciferase-expressing adenoviruses derived from adenovirus species B, C, D and E. HAdV-B16, -B21 and -B50 from species B1 as well as HAdV-B34 and -B35 were found to be CD46-dependent. HAdV-C5 and HAdV-E4 from species E were found to be CAR-dependent. Regarding cell entry of HAdV-B3 and -B14 and all species D viruses, both CAR and CD46 play a role, and here, other receptors or attachment structures may also be important since transductions were reduced but not completely inhibited. The established human knockout cell model enables the identification of the most applicable adenovirus types for gene therapy and to further understand adenovirus infection biology.


Subject(s)
Adenoviridae Infections , Adenoviruses, Human , Adenoviruses, Human/genetics , Adenoviruses, Human/metabolism , Cell Communication , Cell Line , Gene Library , Humans
16.
Stroke ; 53(SUPPL 1), 2022.
Article in English | EMBASE | ID: covidwho-1724002

ABSTRACT

Patients with significant cerebrovascular comorbidities (e.g. brain ischemia, vascular dementia) are more affected and are more likely to have worsened post-acute neurologic sequelae after SARSCoV-2 infection. This may be due to viral invasion and propagation in brain endothelial cells (BECs) and disruption of the blood-brain barrier (BBB). Viral spike protein used to bind and infect host cells encodes an arginine-glycine-aspartic acid (RGD) motif that it may use to bind integrins cell receptors that play an important role in cerebrovascular integrity. Therefore, integrins may represent an acute and post-acute SARS-CoV-2 therapeutic target. However, the interplay between vascular dysregulation, integrin function, and COVID-19 is unclear. As we have previously demonstrated that activation of the integrin α5 plays a key role in BBB breakdown, stroke injury, OGD/R, SARS-CoV-2 infection, and its inhibition with the clinically validated peptide ATN-161 is therapeutic in these conditions, we hypothesize that SARS-CoV-2 alters BEC α5 integrin (and associated tight junction protein) expression as a means of infecting and altering cerebrovascular integrity, and this can be prevented by ATN-161. Methods: Mouse BECs (bEnd3) were inoculated with heat-inactivated SARS-CoV-2 (Isolate USAWA1/2020) or delta variant of SARS-CoV-2 spike protein for 24 h then later exposed to hypoxia for 6h to model the effects of in vivo pulmonary infection. Cells were pretreated with ATN-161 (1, 5, and 10μM) 1h before SARS-CoV-2 challenge and during hypoxia. α5 and claudin-5 proteins were analyzed by immunoblotting. Results: Both SARS-CoV-2 inoculations induced integrin α5 and decreased claudin-5 expression (delta > SARS-CoV-2) in a dose-dependent fashion, although higher doses of SARS-CoV-2 (2.5 and 5 μg) had no effect on these proteins. SARS-CoV-2 spike protein challenge at 0.5 μg followed by hypoxia resulted in increased α5 and decreased claudin-5 expression in either hypoxia or SARSCoV-2+hypoxia combination. ATN-161 (10μM) pretreatment inhibited SARS-CoV-2+hypoxia-induced α5 upregulation and restored claudin-5 loss. In addition to its demonstrated anti-viral effects, ATN161 may be an important therapy for SARS-CoV-2-mediated cerebrovascular injury.

17.
Tissue Barriers ; 9(4): 1937013, 2021 10 02.
Article in English | MEDLINE | ID: covidwho-1298924

ABSTRACT

Blood-gas barrier (BGB) or alveolar-capillary barrier is the primary tissue barrier affected by coronavirus disease 2019 (COVID-19). Comprising alveolar epithelial cells (AECs), endothelial cells (ECs) and the extracellular matrix (ECM) in between, the BGB is damaged following the action of multiple pro-inflammatory cytokines during acute inflammation. The infection of AECs and ECs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen behind COVID-19, triggers an inflammatory response at the BGB, inducing the release of interleukin 1 (IL-1), IL-6, tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-ß), high mobility group box 1 (HMGB1), matrix metalloproteinases (MMPs), intercellular adhesion molecule-1 (ICAM-1) and platelet activating factor (PAF). The end result is the disassembly of adherens junctions (AJs) and tight junctions (TJs) in both AECs and ECs, AEC hyperplasia, EC pyroptosis, ECM remodeling and deposition of fibrin clots in the alveolar capillaries, leading to disintegration and thickening of the BGB, and ultimately, hypoxia. This commentary seeks to provide a brief account of how the BGB might become affected in COVID-19.


Subject(s)
Blood-Air Barrier/metabolism , COVID-19/metabolism , Pulmonary Gas Exchange , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Blood-Air Barrier/pathology , COVID-19/pathology , Humans , Microvessels/metabolism , Microvessels/pathology
19.
Biofactors ; 47(2): 190-197, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-886966

ABSTRACT

Neuroinflammation leads to neurodegeneration, cognitive defects, and neurodegenerative disorders. Neurotrauma/traumatic brain injury (TBI) can cause activation of glial cells, neurons, and neuroimmune cells in the brain to release neuroinflammatory mediators. Neurotrauma leads to immediate primary brain damage (direct damage), neuroinflammatory responses, neuroinflammation, and late secondary brain damage (indirect) through neuroinflammatory mechanism. Secondary brain damage leads to chronic inflammation and the onset and progression of neurodegenerative diseases. Currently, there are no effective and specific therapeutic options to treat these brain damages or neurodegenerative diseases. Flavone luteolin is an important natural polyphenol present in several plants that show anti-inflammatory, antioxidant, anticancer, cytoprotective, and macrophage polarization effects. In this short review article, we have reviewed the neuroprotective effects of luteolin in neurotrauma and neurodegenerative disorders and pathways involved in this mechanism. We have collected data for this study from publications in the PubMed using the keywords luteolin and mast cells, neuroinflammation, neurodegenerative diseases, and TBI. Recent reports suggest that luteolin suppresses systemic and neuroinflammatory responses in Coronavirus disease 2019 (COVID-19). Studies have shown that luteolin exhibits neuroprotective effects through various mechanisms, including suppressing immune cell activation, such as mast cells, and inflammatory mediators released from these cells. In addition, luteolin can suppress neuroinflammatory response, activation of microglia and astrocytes, oxidative stress, neuroinflammation, and the severity of neuroinflammatory diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and TBI pathogenesis. In conclusion, luteolin can improve cognitive decline and enhance neuroprotection in neurodegenerative diseases, TBI, and stroke.


Subject(s)
Brain Injuries, Traumatic/drug therapy , COVID-19 Drug Treatment , Inflammation/drug therapy , Luteolin/therapeutic use , Neuroprotective Agents/therapeutic use , Brain/drug effects , Brain/virology , Brain Injuries/complications , Brain Injuries/drug therapy , Brain Injuries/virology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/virology , COVID-19/complications , COVID-19/virology , Flavones/therapeutic use , Humans , Inflammation/complications , Inflammation/virology , Neurons/drug effects , Neurons/virology , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity
20.
Life Sci ; 264: 118450, 2021 Jan 01.
Article in English | MEDLINE | ID: covidwho-885374

ABSTRACT

AIMS: Hydroxychloroquine (HCQ), a widely used antimalarial drug, is proposed to treat coronavirus disease 2019 (COVID-19). However, no report is currently available regarding the direct effects of HCQ on gut microbiota, which is associated with the outcomes of elderly patients with COVID-19. Here, we first investigated the effects of HCQ on intestinal microecology in mice. MAIN METHODS: Fifteen female C57BL/6J mice were randomly divided into two groups: HCQ group (n = 10) and control group (n = 5). Mice in the HCQ group were administered with HCQ at dose of 100 mg/kg by gavage daily for 14 days. The feces of mice were collected before and on the 7th and 14th days after HCQ challenge, and then analyzed by 16S rRNA amplicon sequencing. At the end of the experiment, the hematology, serum biochemistry and cytokines were determined, respectively. The mRNA expression of tight junction proteins in colonic tissues were also studied by RT-PCR. KEY FINDINGS: HCQ challenge had no effects on the counts of white blood cells, the levels of serum cytokines, and the gene expression of tight junction proteins in colon. HCQ also did not increase the content of serum d-lactate in mice. Notably, HCQ significantly decreased the diversity of gut microbiota, increased the relative abundance of phylum Bacteroidetes whereas decreased that of Firmicutes. SIGNIFICANCE: Short-term high dose HCQ challenge changes gut microbiota but not the intestinal integrity and immunological responses in mice. Special attention should be paid to the effects of HCQ on intestinal microecology in future clinical use.


Subject(s)
Colon/drug effects , Colon/immunology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/immunology , Hydroxychloroquine/administration & dosage , Hydroxychloroquine/adverse effects , Administration, Oral , Animals , Colon/metabolism , Cytokines/blood , Cytokines/immunology , Feces/microbiology , Female , Lactic Acid/blood , Mice , RNA, Ribosomal, 16S/genetics , Tight Junction Proteins/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL